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Evolution equation of population genetics: Relation to the density-matrix theory
of quasiparticles with general dispersion laws
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The Waxman-Peck theory of population genetics is discussed in regard of soil bacteria. Each bacterium is
understood as a carrier of a phenotypic parameterp. The central objective is the calculation of the probability
density with respect top, F(p,t;p0), of the carriers living at timet.0, provided that initially att050, all
bacteria carried the phenotypic parameterp050. The theory involves two small parameters: the mutation
probabilitym and a parameterg involved in a functionw(p) defining the fitness of the bacteria to survive the
generation timet and give birth to an offspring. The mutation from a statep to a stateq is defined by a
Gaussian with a dispersionsm

2 . The author focuses our attention on a functionw(p,t) which determines
uniquely the functionF(p,t;p0) and satisfies a linear equation~Waxman’s equation!. The Green function of
this equation is mathematically identical with the one-particle Bloch density matrix, wherem characterizes the
order of magnitude of the potential energy.~In the x representation, the potential energy is proportional to the
inverted Gaussian with the dispersionsm

2 ). The author solves Waxman’s equation in the standard style of a
perturbation theory and discusses how the solution depends on the choice of the fitness functionw(p). In a
sense, the functionc(p)512w(p)/w(0) is analogous to the dispersion functionE(p) of fictitious quasipar-
ticles. In contrast to Waxman’s approximation, wherec(p) was taken as a quadratic function,c(p)'gp2, the
author exemplifies the problem with another function,c(p)5g@12exp(2ap2)#, whereg is small buta may be
large. The author shows that the use of this function in the theory of the population genetics is the same as the
use of a nonparabolic dispersion lawE5E(p) in the density-matrix theory. With a general functionc(p), the
distribution functionF(p,t;0) is composed of ad-function component,N(t)d(p), and a blurred component.
When discussing the limiting transition fort→`, the author shows that his functionc(p) implies thatN(t)
→N(`)Þ0 in contrast with the asymptoticsN(t)→0 resulting from the use of Waxman’s functionc(p)
;p2.

DOI: 10.1103/PhysRevE.67.021913 PACS number~s!: 87.10.1e, 02.50.Ey, 05.10.Gg, 87.23.Cc
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I. INTRODUCTION

During the last century, the development of the quant
theory has been paralleled with the development of
theory of stochastic processes. When comparing the ti
dependent Schro¨dinger equation of the quantum mechan
with the Fokker-Planck equation of the stochastic dynam
we may assert that both these equations are of the same
Mathematically speaking, both these equations are lin
second-order partial differential equations of the parab
type. The Fokker-Planck equation can be derived for a
process that can be described by the Langevin equa
hdx(t)/dt2F@x(t)#5 f (t) ~cf., e.g., Refs.@1,2#!. In the
Langevin equation,h.0 is a deterministic constant,F(x) is
a deterministically defined real-valued function, andf (t) is a
stochastically defined zero-centered stationary Gaus
white-noise function.@As a rule,x(t) and f (t) are considered
as real random functions of the real time variablet. The
stationarity of f (t) is meant in the stochastic sense.# Using
the angular bracketŝ& for the averaging with respect to th
randomness of f (t), we assume that^ f (t)&50 and
^ f (t1) f (t2)&5Ld(t12t2) at all time instantst,t1 ,t2. The ini-
tial value ofx(t), x(0)5x0, is usually a deterministic value
given in advance. The Fokker-Planck equation concerns

*Electronic address: bezak@fmph.uniba.sk
1063-651X/2003/67~2!/021913~10!/$20.00 67 0219
e
e-

s,
nd.
ar
c
y
on

an

he

conditional probability density P(x,tux0)5^d„x(t)2x…&
>0,

]P~x,tux0!

]t
5

L

2h2

]2P~x,tux0!

]x2
2

1

h

]

]x
@F~x!P~x,tux0!#,

~1!

P~x,10ux0!5d~x2x0!. ~2!

If x(t) is the instantaneous position of a Brownian partic
moving along a line, we may speak of the diffusion coef
cientD ~such that 2h2D5L.0) and of the mobility 1/h of
the particle. ThenF(x)52dVB(x)/dx is a driving force,
f (t) is the Langevin stochastic force, and Eq.~1! is the gov-
erning equation of the Brownian dynamics. Equation~1! can
be transformed into an equation of the Schro¨dinger type by
substituting

P~x,tux0!5expS h

L
@VB~x0!2VB~x!# DR~x,tux0!. ~3!

The functionR(x,tux0) obeys the equation

]R~x,tux0!

]t
5

L

2h2

]2R~x,tux0!

]x2
2V~x!R~x,tux0!, ~4!

where
©2003 The American Physical Society13-1
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V~x!5
1

2h F 1

L S dVB~x!

dx D 2

2
d2VB~x!

dx2 G
5

1

2h F @F~x!#2

L
1

dF~x!

dx G . ~5!

Equation~4! is known as the real Schro¨dinger equation. Ift
is replaced by\b, where kBT51/b, Eq. ~4!, with some
change of symbols, becomes the Bloch equation for the o
particle canonical density matrix of boltzons of a const
~effective! mass in the thermodynamic equilibrium at th
temperatureT @3#. Thus, when comparing Eqs.~1! and ~4!,
we can always juxtapose the Brownian dynamics and
quantum theory.~This juxtaposition can also be based
Feynman’s path-integral theory@4,5#.! The transition from
the formalism of the Brownian theory to the formalism of t
quantum theory is easy because if we define the driving fo
F(x)52dVB(x)/dx, we can directly calculate the functio
V(x) according to Eq.~5!. @Vice versa, if one tries to find
F(x) corresponding to a given functionV(x), one has to
solve Eq.~5! which is nonlinear. Equation~5! is known as
the Riccati equation. Compare with any handbook on n
linear differential equations—e.g., Ref.@6#. Recently, the
usefulness of the Riccati equation in solving various pr
lems of classical and quantum mechanics has been wi
corroborated@7–11#. Nonetheless, except for the rare pos
bility to derive analytical solutionsF(x) of this equation, in
some cases whenV(x) is chosen in a very simple and spec
form, Eq. ~5! cannot be solved otherwise than numerica
Thus, the problem of finding a Brownian model to a giv
quantum-mechanical model is relatively difficult.#

In evolutionary theories of various populations, we m
usex(t)5 ln n(t)2ln n(t), takingn(t) as the number of indi-
viduals of a certain kind at the time instantt and defining
ln n(t) as an average value of lnn(t). Sincen(t) may repre-
sent very large numbers,n(t) may be treated as a continuou
function so that the values ofx(t) may span the whole set o
real numbers. Since mutations are random events, a fo
stochastic theory of the population genetics can certainly
based on the use of the Langevin equation and, corresp
ingly, of the Fokker-Planck equation~1!. If it is advanta-
geous, we may also use the equivalent Schro¨dinger-type
equation~4!.

Notwithstanding, recently, Waxman has shown that th
is also another mathematical relation between the popula
genetics and the quantum mechanics@12#. Waxman’s theory
concerns a simplified, but well-founded, model that we c
the Waxman-Peck model.~Compare with Refs.@13,14#, and
references quoted therein.! Waxman’s Schro¨dinger-type
equation involves, in thex representation, the ‘‘potential
energy’’ function

V~x!;2m expS 2
sm

2 x2

2 D , ~6!

with two mutation parametersm.0 and sm.0. The
‘‘kinetic-energy’’ operatorT̂ in Waxman’s equation was cho
sen in the usual form,T̂;2]2/]x2.
02191
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In the present paper, we will generalize Waxman’s theo
In the momentum representation, Waxman’s kinetic energ
quadratic,^puT̂up&;p2, as it is in the quantum mechanic
On the other hand, we assume that^puT̂up&, being a positive
function, need not be quadratic; we only require its analy
ity along the realp axis. This variability offers further pos
sibilities to model the genetic evolution by adequate fitn
functions~cf. Sec. II!. Obviously, if ^puT̂up&.0 is nonqua-
dratic, the mathematical relation between the evolution eq
tion of the population genetics and the quantum theory
comes somewhat more sophisticated than in Waxman’s c
Namely, when paying heed to thex representation, we hav
generally to consider a more complicated equation than
real Schro¨dinger equation: in general, our equation, with t
Hamilton operatorE( p̂)1V(x), where E(p);c(p), is a
functionaldifferential equation.@Note thatp̂52 i ]/]x. The
McLaurin development ofc(p) may involve an infinite num-
ber of terms#. For solid state theorists, such an equation
familiar as the transformed effective mass equation~cf., e.g.,
the monograph@15# or our paper@16#!. This equation was
invented for envelope wave functions of electrons in crys
line solids. @Synonymously, we may also speak of the re
Schrödinger-Wannier equation. It is identical with the ‘‘one
particle Bloch equation’’ for the canonical density matr
with the HamiltonianE( p̂)1V(x).]

From the viewpoint of the effectiveness of calculations
the present paper, we deem the momentum represent
better than thex representation. Under the assumption of t
smallness of the parameterm, we can apply the ‘‘plane-wave
perturbation theory’’~Sec. III! of the density-matrix theory.
For a broad class of fitness functions, the distribution fu
tion of the theory of the population genetics can be expres
as a linear expression of the mutation parameterm.

II. THE WAXMANN-PECK MODEL
OF THE POPULATION GENETICS

Let us assume that a large enough habitat~such as a given
volume of soil! hosts bacteria of a certain kind. The habit
yields space, food, moisture, temperature, inhibitory s
stances, and other needs for the survival of the bacteria in
sense that the total number of bacteria will never decreas
zero and will never increase to infinity. Most of the bacte
are free-living micro-organisms multiplying by simple fis
sion. This means that their reproduction is asexual. In ot
words, each bacterial individual has only one parent. T
typical number of bacteria may be huge indeed: 1 g of s
may contain several hundred million bacteria. Although t
bacteria are small organisms—usually 0.3–2mm in
diameter—their morphology is well distinguishable micr
scopically.

There are two most frequent shapes of soil bacteria: s
rods and~slightly deformed! spheres. In both these cases, w
may characterize each bacterium by its sizes. For instance, if
the bacterium resembles a rod, we defines as the length of
the rod. Denoting the average of lns as ln s, we define the
phenotypic parameter asp5 ln s2ln s. Recalling biology, we
consider the phenotypic parameter as an inheritable valu
3-2
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there were no mutations in the reproduction of the bacte
all the bacterial individuals in each generation would
equally long, i.e.,p would be a constant equal top050. But
then, the mutations—however infrequent they may be
account for a dispersal of the valuep among the individuals,
despite the fact that all individuals under consideration
still belong to the same biological type.

Generally, the theory has to respect both mutations cau
by environmental effects and spontaneous mutations. Fo
sake of simplicity, we will consider no other than the spo
taneous mutations. The spontaneous mutations are m
due to transcription mistakes in the replication of the DN
i.e., in the transmission of the genetic information just at
reproduction events. Letm.0 be the probability of the oc
currence of such a mutation. In the case of soil bacte
biologists have estimated the values ofm between 1028 and
1025. If a mother bacterium is the carrier of the phenotyp
valuep, the daughter bacterium will carry the same valuep
with the probability equal to 12m. ~We assume that a new
born daughter bacterium grows quickly enough to the ad
size before becoming mature so that we need not disting
between the size of young and adult bacteria.! If the birth of
the daughter bacterium is accompanied with a mutation
the DNA, then there is a nonzero probabilityM (q2p)dq for
the possibility that the phenotypic valueq of the daughter
bacterium may lie in the interval (q,q1dq), provided that
the phenotypic value of the mother bacterium was equal tp.
Following Waxman, we take the functionM (p) as a Gauss-
ian,

M ~p![M ~p;sm!5S 1

2psm
2 D 1/2

expS 2
p2

2sm
2 D . ~7!

Here,sm
2 is the dispersion of values ofp.

Now, to formulate the evolution equation of the popu
tion genetics, we have to introduce the average genera
time t. Simplifying the problem, we may consider a discre
time variable as follows. Let the births of the bacteria happ
at time instantstn5(n21)t, n51,2, . . . . Then we may
say that the bacteria of thenth generation live betweentn21
and tn . Thus,n is the generation index. The time discretiz
tion is an auxiliary, rather formal, mathematical trick whic
loses its significance if the timet is continualized. For each
n, we define the distribution functionFn(p) so that
Fn(p)dp may be interpreted as the probability of the occ
rence of the phenotypic valuep in the interval (p,p1dp) in
the nth generation. The basic problem is to relate the dis
bution function of the generation numbern11 ~‘‘generation
of daughters’’! with the distribution function of the genera
tion numbern ~‘‘generation of mothers’’!.

Before writing the recurrent formula between the fun
tionsFn11(p) andFn(p), which is our primary objective in
this section, we have still to mention one important poi
Even if we have neglected the environmental influence u
the mutations, we do have to consider environmental effe
in a Darwinian sense. Namely, we have to respect that no
bacteria, after their birth, are equally fit to survive over t
whole generation timet. Only those bacteria whose age
02191
a,

o

ed
he
-
nly
,
e

a,

lt
sh

f

-
on

n

-

i-

-

.
n
ts
ll

equal tot give birth to an offspring. Some of the bacteria d
before becoming mature. These bacteria do not take pa
producing the individuals of the next generation.@However,
we assume that even the fittest mother bacterium dies s
after giving birth to the daughter bacterium. Therefore,
do not include the mother bacteria in the number of the b
teria living in the time interval (tn ,tn11). The mother bac-
teria have been included in the number of the bacteria liv
in the time interval (tn21 ,tn)]. The fitness of the bacteria to
live in their environment until their maturity can be modele
by a non-negative functionw(p). Requiring that

0,w~p!,1, ~8!

we may give the functionw(p) a probabilistic meaning. We
assume that a newborn carrier of the phenotypic valuep has
the chance to live until maturity with the probabilityw(p).
The number of mature carriers of the phenotypic valuep
from the interval (p,p1dp) in thenth generation is propor-
tional to w(p)Fn(p). To determine the shape of the fun
tion, w(p) should be a matter of thorough biological inve
tigations from case to case. We assume, as Waxman and
did, thatw(p) behaves analytically around the valuep050
and that this value corresponds to the maximum value
w(p). ~Apparently, the fittest bacterial individuals are tho
whose phenotypic parameterp is equal to the average valu
p̄. However,p̄50.)

Waxman and Peck have chosen the functionw(p) in the
special form

w~p!5w~0!exp~2gp2!, 0,w~0!,1, ~8a!

assuming that 0,g!1. @In fact, expression~8a! definesthe
Waxman-Peck model. The value ofw(0) is insignificant
since the distribution functionsFn(p) are independent o
w(0).]

There are, of course, many other possibilities to mo
w(p) by slowly varying functions with the maximum atp0
50. These functions need not tend to zero ifupu→`. ~The
fitness function has been defined as aprobability, not as a
probability density.! In order to illustrate how the theory ma
depend on the choice of the functionw(p), we will treat, in
addition to the Waxman-Peck model, also an alternat
model. Our model~considered as an example! is defined by
the fitness function

w~p!5w~0!$12g@12exp~2ap2!#%. ~8b!

Here, we assume that 0,g!1, admitting thata.0 need not
be a small number. Expression~8b! tends tow(0)(12g)
.0 if upu→`.

The distribution functionFn11(p) of the generation of
daughters is determined by two contributions from t
generation of mothers. The first stems from the births wi
out mutations. The phenotypic valuep is unchanged at such
births and the probability of occurrence of such birt
is equal to 12m. The first contribution toFn11(p) is
proportional to (12m)w(p)Fn(p). The second contri-
bution to Fn11(p) is proportional to m*2`

` dqM(p
2q;sm)w(q)Fn(q). The interpretation of this expression
3-3
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clear: if the birth of the carrier of the phenotypic valuep is
accompanied with a mutation, we have to consider ma
individuals, allowing all possible phenotypic valuesq of po-
tential mothers. To exhaust all such possibilities, we have
integrateM (p2q;sm)w(q)Fn(q) with respect toq. Since
both Fn(p) and Fn11(p) are probability densities
t

n

a

02191
re

to

we require that

E
2`

`

dpFn~p!5E
2`

`

dpFn11~p!51. ~9!

Therefore, we write the equality
Fn11~p!5

~12m!w~p!Fn~p!1mE
2`

`

dqM~p2q;sm!w~q!Fn~q!

E
2`

`

dqw~q!Fn~q!

. ~10!
of
ria
ing
The denominator on the right hand side of Eq.~10! warrants
the fulfillment of condition~9!. Sinceg is small, it is conve-
nient to introduce the complementary functionc(p) to
w(p)/w(0):

c~p!512
w~p!

w~0!
. ~11!

In the case of the Waxman-Peck model,

c~p!512exp~2gp2!, ~11a!
while in the case of the model defined by function~8b!,

c~p!5g@12exp~2ap2!#. ~11b!

From the viewpoint of biology, the smallness ofg implies
that the comparison of the survival fitness of the majority
the bacteria with the survival fitness of the fittest bacte
should not reveal too conspicuous differences. When us
the functionc(p), we can rewrite formula~10! in the form
Fn11~p!5

~12m!@12c~p!#Fn~p!1mE
2`

`

dqM~p2q;sm!@12c~q!#Fn~q!

12E
2`

`

dqc~q!Fn~q!

. ~108!
ed
m

s
ma-
eria.
With realistic values ofp aroundp050, the values ofgp2

are small. Thus, in the case of the Waxman-Peck model,
values ofc(p) are also small and

c~p!5gp21O~g2!. ~11a8!

On the other hand, in the case of the model defined by fu
tion ~8b!, we have to keep expression~11b! intact sincea
need not be a small parameter.

We may take advantage of the possibility to neglect
terms of the order of magnitude ofg2, as well as ofgm. So
we write

1

12E
2`

`

dqc~q!Fn~q!

511E
2`

`

dqc~q!Fn~q!1•••

and
he

c-

ll

Fn11~p!5Fn~p!2Fc~p!2E
2`

`

dqc~q!Fn~q!GFn~p!

2mFFn~p!2E
2`

`

dqM~p2q;sm!Fn~q!G
1••• . ~109!

Now, in the approximation neglecting the terms symboliz
by the dots, we are ready to go over into the formalis
employing the continual time variablet, realizing that the
value of the generation indexn may be high. Typically, the
generation timet of soil bacteria is about 20 min. Thi
means that after the elapse of 100 days, the genetic infor
tion passes over more than 7000 generations of the bact
If n@1, we may identifyFn(p) with F(p,t) and approxi-
mate the differenceFn11(p)2Fn(p) as the time derivative

Fn11~p!2Fn~p!5t
]F~p,t !

]t
1••• ~12!
3-4
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Thus, we can rewrite Eq. (109) in the approximate integro
differential form

]F~p,t !

]t
52

1

t Fc~p!2E
2`

`

dqc~q!F~q,t !GF~p,t !

2
m

t FF~p,t !2E
2`

`

dqM~p2q;sm!F~q,t !G .
~13!

This equation was derived in Ref.@12# ~where, however,
c(p) was approximated asgp2). Evidently, Eq.~13! is non-
linear. Fortunately, this nonlinearity does not mean a seri
problem, since we may employ the substitution

F~p,t !5
w~p,t !

E
2`

`

dqw~q,t !

, ~14!

and require the validity of the equation

]w~p,t !

]t
52

1

t
c~p!w~p,t !1

m

t E2`

`

dqM~p2q;sm!w~q,t !.

~15!

Equation~15! is linear. After integrating it with respect top,
we obtain the equation d/dt*2`

` dqw(q,t)
52(1/t)*2`

` dpc(p)w(p,t)1(m/t)*2`
` dqw(q,t) and

when substituting expression~14! for w(p,t), we arrive at
the identity

d

dtE2`

`

dqw~q,t !

5E
2`

`

dqw~q,t !F2
1

tE2`

`

dpc~p!F~p,t !1
m

t G .
~16!

The differentiation of expression~14! gives the identity

]w~p,t !

]t
5

]F~p,t !

]t E
2`

`

dqw~q,t !

1F~p,t !
d

dtE2`

`

dqw~q,t !. ~17!

When equalizing the right hand sides of Eqs.~15! and ~17!
and when respecting identity~16!, we obtain Eq.~l3! for the
function F(p,t). Thus, instead of directly solving Eq.~13!,
we may solve Waxman’s equation~15! at first. This task, as
we will show in Sec. III, is not difficult. If the function
F(p,t) obeys linear boundary conditions, the functio
w(p,t) has to obey the same boundary conditions. We w
simply assume that

F~p,t !→0 and w~p,t !→0 if upu→`. ~18!
02191
s
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It remains still to discuss the initial condition. Whichev
initial function

F~p,0!5F0~p! ~19!

is chosen, the solutionF(p,t) for t.0 of Eq.~13! is unique.
Since Eq.~15! is linear, we may multiplyw(p,t) by an arbi-
trary constantA. If w(p,t) gives the functionF(p,t), then
Aw(p,t) does also give the same functionF(p,t). There-
fore, we may choose the integral*2`

` dqw(q,0) ~which is a
constant! equal to unity. Then formula~14! and equality~19!
give us the initial condition

w~p,0!5F0~p! ~20!

for the functionw(p,t).
If F0(p) is an even function, Eq.~15! implies that the

function w(p,t) is also even in the variablep and F
(2p,t)5F(p,t) at all times t.0. In this case, the mea
value ofp is invariant in time~i.e., a constant!,

p̄5E
2`

`

dp pF~p,t !50. ~21!

Equation~15! is formally the same as the Schro¨dinger-
Wannier equation in the momentum representation. It
easily be Fourier transformed. We define the function

c~x,t !5
1

A2p
E

2`

`

dp exp~ ipx!w~p,t !. ~22!

This function is the solution of the functional differentia
equation

]c~x,t !

]t
52

1

t
cS 2 i

]

]xDc~x,t !1
m

t
expS 2

sm
2 x2

2 Dc~x,t !.

~23!

In Waxman’s approximation, Eq.~23! reads

]c~x,t !

]t
5

g

t

]2c~x,t !

]x2
1

m

t
expS 2

sm
2 x2

2 Dc~x,t !.

~23a!

If c(p) is taken in the form of expression~11b!, the func-
tional differential equation forc(x,t) reads

]c~x,t !

]t
5

g

t FexpS a
]2

]x2D 21Gc~x,t !

1
m

t
expS 2

sm
2 x2

2 Dc~x,t !. ~23b!

III. THE PLANE-WAVE PERTURBATION THEORY

Instead of solving Eq.~23a! or Eq.~23b! and carrying out
the integration
3-5
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w~p,t !5
1

A2p
E

2`

`

dx exp~2 ipx!c~x,t !, ~24!

we prefer to calculate the functionw(p,t) directly. Defining
the potential-energy operatorV̂(p)

V̂~p!w~p,t !5
1

tE2`

`

dqM~p2q;sm!w~q,t !, ~25!

let us write Eq.~15! in the form

]w~p,t !

]t
52

c~p!

t
w~p,t !1mV̂~p!w~p,t !, ~26!

and define the Green functionG(p,t;p0) of this equation.
Employing the Green function, we writew(p,t) ~for t.0) as
the integral

w~p,t !5E
2`

`

dp0G~p,t;p0!w~p0,0!. ~27!

The initial function w(p,0) has been defined by equali
~20!. The Green function itself obeys the equation

]G~p,t;p0!

]t
52

c~p!

t
G~p,t;p0!1mV̂~p!G~p,t;p0!.

~28!

According to equality~27!, G(p,t;p0) satifies the initial con-
dition

G~p,0;p0!5d~p2p0!. ~29!

In the special case whenc(p) is approximated by the qua
dratic function, Eq.~28! is formally identical with the Bloch
equation for the one-particle canonical density mat
Cb(p,p0) in the thermodynamic equilibrium. In the case o
general functionc(p), we have to speak of quasiparticle
with a nonparabolic dispersion law. The functionC10(p,p0)
is equal tod(p2p0) for quantum-mechanical reasons. Wh
transforming Eq.~28! into thex-representation form, one ob
serves that the potential energy corresponds to awell: it is an
inverted Gaussian@cf. expression~6!#.

We can deriveG(p,t;p0) as the series

G~p,t;p0!5(
j 50

`

m jK j~p,t;p0!. ~30!

The zero-order term is the solution of the equation

]G0~p,t;p0!

]t
52

c~p!

t
G0~p,t;p0! ~31!

with respect to the condition

G0~p,0;p0!5d~p2p0!. ~32!

When solving Eq.~31!, we obtain, fort.0, the function
02191
G0~p,t;p0!5d~p2p0!expS 2
c~p!t

t D . ~33!

With this function, we can write down the integral form o
Eq. ~28!

G~p,t;p0!5G0~p,t;p0!1mE
0

t

dt1E
2`

`

dp1G

3~p,t2t1 ;p1!V̂~p1!G0~p1 ,t1 ;p0!. ~34!

This gives a Dyson-type series~cf., e.g., Ref.@17#.! The first-
order term in this series~linear in m) reads

mG1~p,t;p0!5mE
0

t

dt1E
2`

`

dp1G0~p,t2t1 ;p1!

3V̂~p1!G0~p1 ,t1 ;p0!

5
m

t E0

t

dt1E
2`

`

dp1G0~p,t2t1 ;p1!

3E
2`

`

dqM~p12q;sm!G0~q,t1 ;p0!.

~35!

After inserting expressions~7! and ~33! here, we obtain the
function

mG1~p,t;p0!5
m

t S 1

2psm
2 D 1/2

expS 2
~p2p0!2

2sm
2 D

3E
0

t

dt1expS 2
c~p!~ t2t1!1c~p0!t1

t D .

After performing the integration with respectt1, we arrive,
with respect to formula~7!, at the final result

mG1~p,t;p0!5mM ~p2p0 ;sm!

3
exp@2c~p0!t/t#2exp@2c~p!t/t#

c~p!2c~p0!
.

~36!

In the same way, we could also calculate higher-order te
~i.e., the terms proportional tom j with j .1) in series~30!.
We expect, however, that higher-order terms are negligi
since the mutation probabilitym is, as biologists have prove
in their extensive studies, very small.

IV. DEVELOPMENT OF THE PHENOTYPIC DIVERSITY
IN A POPULATION WHOSE INDIVIDUALS ARE

INITIALLY EQUAL

If all individuals of a population are initially, at the time
t050, carriers of the same phenotypic valuep0, the initial
distribution functionF0(p) is equal to thed function:

F0~p!5d~p!. ~37!
3-6
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(p05 p̄50 according to our definition of the phenotypic p
rameterp.) In regard to identity~20!, Eq. ~27! allows us to
assert that

w~p,t !5G~p,t;0!. ~38!

Sincec(0)50 @cf. expression~11!#, formulas~33! and ~36!
imply, respectively, that

G0~p,t;0!5d~p! ~39!

and

mG1~p,t;0!5mM ~p;sm!
12exp@2c~p!t/t#

c~p!
~40!

at all times t.0. Hence, in the linear approximation wit
respect tom, we have got the function

w~p,t !5d~p!1mM ~p;sm!
12exp@2c~p!t/t#

c~p!
. ~41!

The only problem that we have still left unsolved is the c
culation of the integral

E
2`

`

dpw~p,t !511mS 1

2psm
2 D 1/2E

2`

`

dp expS 2
p2

2sm
2 D

3
12exp@2c~p!t/t#

c~p!
. ~42!

Recall that, according to Eq.~14!,

F~p,t !5N~ t !w~p,t !, ~43!

where

N~ t !5F E
2`

`

dpw~p,t !G21

. ~44!

We will calculate the functionN(t) approximately, assuming
that 0,sm,1. ~In fact, it is probable thatsm!1). The
most relevant values ofp contributing to the value of the
integral on the right hand side of formula~42! lie in the
interval (2sm,sm).

A. Distribution function F„p,t;0… in the model where
c„p…Ä1Àexp„Àgp2

… „the Waxman-Peck model…

Since 0,gsm
2 !1, we may use, when calculating integr

~42!, the approximation expressed by formula (11a8). Thus,
02191
-

E
2`

`

dpw~p,t !'11mS 1

2psm
2 D 1/2E

2`

`

dp expS 2
p2

2sm
2 D

3
12exp~2gp2t/t!

gp2

511
m

t S 1

2psm
2 D 1/2E

0

t

dt1E
2`

`

dp

3F2expS 1

2sm
2

1
gt1

t D p2G .

After carrying out the integration with respect top, we obtain
the simple result

E
2`

`

dpw~p,t !'11
m

t E0

t dt1

~112gsm
2 t1 /t!1/2

511
m

gsm
2 F S 11

2gsm
2 t

t D 1/2

21G .
Hence, according to formula~14!, we obtain the distribution
function

F~p,t;0!5N~ t !Fd~p!1
m

g
M ~p;sm!

12exp~2gp2t/t

p2 G
~43a!

with the normalizing coefficient

N~ t !5H 11
m

gsm
2 F S 11

2gsm
2 t

t D 1/2

21G J 21

. ~44a!

From the probabilistic viewpoint, the functionN(t) is well
understood. When counting all the bacteria living at the ti
instantt, we have to distinguish whether they are carriers
the original phenotypic valuep050 or whether they carry
other values,pÞ0. Since *2e

e dpF(p,t;0)5N(t) ~if e
→10), we may say that a randomly chosen bacterium m
be the carrier of the valuep050 with the probability equal to
N(t). If t→`, the probabilityN(t) decreases towards zero
However, this decreasing—the process influenced both
the mutations and by the fitness of the bacteria to live in th
environment—is slow. Indeed, let us takeg50.02, sm

50.05, andm51025. Then m/(gsm
2 )50.2 and 2gsm

2 t/t
51 for the generation numbert/t5104. If these values ofg
and sm, together with the value 20 min for the generatio
time t, may be taken as realistic for some soil bacteria,
total time t comprising the lifetime of 10 000 generations
these bacteria equals about five months. If the timet is
roughly ten times~or more than ten times! shorter, formula
~44a! can be simplified:

N~ t !'S 11
mt

t D 21

if
2gsm

2 t

t
!1. ~45!
3-7
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As a rule, the mutation probabilitym is smaller than 2gsm
2 .

Thus, we may write

N~ t !'12
mt

t
if

2gsm
2 t

t
!1. ~458!

B. Distribution function F„p,t;0… in the model where
c„p…Äg†1Àexp„Àap2

…‡

Now we consider a small parameterg (0,g!1) and
another parametera.0, which need not be small. Only i
a!1/sm

2 , we may accept the approximationc(p)'gap2

and there is no essential difference from the Waxman-P
model, onlyg is replaced byga.

Otherwise, ifasm
2 is comparable with unity, the integra

tion of the functionw(p,t) with respect top is much more
complicated but can be accomplished explicitly~it is pre-
sented in the Appendix!.

Here, we confine ourselves to discussing what com
about if asm

2 @1. Essentially, under this condition, we ma
approximate 12exp(2ap2) by unity. Then we obtain the
simple result

E
2`

`

dpw~p,t !'11
m

g F12expS 2
gt

t D G .
Correspondingly, ifasm

2 @1, then

F~p,t;0!'N~ t !H d~z!1
m

g
M ~p;sm!F12expS 2

gt

t D G J ,

~43b!

where

N~ t !5H 11
m

g F12expS 2
gt

t D G J 21

. ~44b!

In the short-time approximation, formulas~45! and~458! are
equally valid as in the caseA. Note that expression~43b! for
the distribution functionF(p,t) would be correct ifc(p)
512w(p)/w(0) might be approximated by a small consta
g.0. In this case,N(t) may again be approximated as
2mt/g at short enough times. However, ift→`, thenN(t)
does not tend to zero~in contrast to the case analyzed in t
preceding section!:

lim
t→`

N~ t !5
g

g1m
.

V. CONCLUDING REMARKS

In the present paper, we have focused our attention on
importance of the fitness functionw(p) in the theory of the
population genetics. Assuming that 0,c(p)51
2w(p)/w(0)!1, we have essentially followed Waxma
and Peck who derived the distribution functionF(p,t) of the
population genetics as a functional of a functionw(p,t) @cf.
expression~14!# satisfying alinear integrodifferential equa-
tion @cf. Eq. ~15!#. However, in contrast with Ref.@12#,
02191
ck

s

t

he

wherec(p) was approximated asgp2 with some small pa-
rameterg.0, we emphasize thatc(p) may be chosen from
a wider class of functions. In particular, we have dealt w
the model defined by the functionc(p)5g@12exp(2ap2)#.

We have calculated the distribution function as a ser
with respect to the mutation probabilitym. Our iteration
scheme for calculating the Green functionG(p,t;p0) of the
equation forw(p,t) has been used in the same manner as
the density-matrix theory.

The replacement ofc(p) by E(p), t by b ~with \51),
andG0(p,t;p0) by the unperturbed canonical density matr
Cb

(0)(p,p0) yields the equation

2
]Cb

(0)~p,p0!

]b
5E~p!Cb

(0)~p,p0!. ~46!

With adequately chosen functionE(p), this equation may
concern conduction electrons in a homogeneous nonde
erate semiconductor.@SinceE(p) is not equal to the kinetic
energy of an electron in vacuum, we may interpret the c
duction electrons as quasiparticles defined by the disper
law E5E(p).]

Our second remark concerns analogy with the diffus
theory. The Fourier transform of the functionG(p,t;p0)
~multiplied by a constant! can be interpreted as the conce
trationC(x,t;x0) of diffusants which all were initially, at the
time t050, localized in the pointx0. In the approximation of
the present paper, we may generally write the equation

]C0~x,t;x0!

]t
52

1

t
cS 2 i

]

]xDC0~x,t;x0!

1
m

t
expS 2

sm
2 x2

2 DC~x,t;x0!. ~47!

If c(p)5gp2, the concentrationC(x,t;x0) obeys the usua
diffusion equation with the diffusion coefficientD5g/t. If
c(p)Þgp2, the diffusion is anomalous. In any case, t
positiveness of the potential-energy term means that Eq.~47!
involves acreationof diffusants.

If m50, we observe thatN05*2`
` dxC0(x,t;x0) is a

quantity not varying in time. Therefore, we may define t
probability densityP0(x,t;x0)5C0(x,t;x0)/N0 and put the
theory on an equal footing with the theory of the Browni
motion.

If c(p)5gp2 andm50, we may write down the Lange
vin equation ẋ(u)5(2g/t)1/2f̃ (u) for the stochastic paths
x(u) (0<u<t) which all start from the common poin
x(0)5x0 at the time instantu050. The value of the end
point x(t)5x at a given time instantt.0 may be arbitrary
and P0(x,t;x0)5^d„x2x(t)…&. In the terminology of the
theory of stochastic processes,x(u) is the Wiener process.

But then a natural question arises: which stochastic p
cess corresponds to the case when the fitness functionw(p)
is modeled by function~8b!, with which we have exempli-
fied our problem? About ten years ago, we dealt with
equation
3-8
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]P0~x,t;x0!

]t
5

g

t FexpS a
]2

]x2D 21GP0~x,t;x0!

1D0

]2P0~x,t;x0!

]x2
. ~48!

@Compare with Eq.~48! in Ref. @18#; see also Ref.@19#.#
Equation~48! corresponds to a stochastic process with pa
x(u) defined by the stochastic equationẋ(u)5@(2D0)1/2

1a( jd(u2uj )# f̃ (u), where f̃ (u) is the standard zero
centered Gaussian white-noise function and where the
represents a point process, in whichuj are random time in-
stants distributed in the Poissonian way. The Poissonian
cess consists of equald pulses: all the pulses are taken wi
the same amplitudea. The average frequency of these puls
is equal tog/t. Clearly, we consider amultiplicative sto-
chastic processx(u) (0<u<t). The probability density
P0(x,t;x0)5^d„x2x(t)…& is the fundamental solution of Eq
~48!. Alternatively~as we have shown in Ref.@18#!, Eq. ~48!
can be written in the equivalent integrodifferential form

]P0~x,t;x0!

]t
5

g

t E2`

`

dx8

3F 1

~2pa!1/2
expS 2

~x2x8!2

2a D2d~x2x8!G
3P0~x,t;x0!1D0

]2P0~x,t;x0!

]x2
. ~49!

In the case whenD050, Eq. ~49! was employed by Laskin
@20# in a theory of the channeling of high-energy particles
crystals.~The channeling occurs when a ray of equi-ene
particles bombarding a crystal is collimated very precisely
a favorable direction.!

In the framework of the diffusion theory, we may co
clude that the parameterg of the theory of the population
genetics corresponds to an environmental noise. Ifg50, the
noise is absent.

Section IV of the present paper has been devoted to
problem of the evolution of a population in which all ind
viduals are initially equal, being the carriers of the phen
typic valuep050. The distribution functionF(p,t;0) of the
population is the sum of a sharpd-function component,
N(t)d(p), and a blurred component. Similarly, as in the th
modynamics, we may distinguish two phases in the pop
tion at any timet.0. Let us denote them as phaseS and
phaseB. The phaseS consist of the carriers of the initia
phenotypic valuep050. The phaseB consists of the indi-
viduals carrying the phenotypic valuespÞp0. In the
Waxman-Peck model@cf. expressions~43a! and ~44a!#, the
probability N(t) tends to zero ift→`. Therefore, we may
say that the phaseSdissolves gradually in the phaseB. In the
model with the fitness functionw(p) defined by expression
~8b! ~or by another similar expression!, the probabilityN(t)
does not tend asymptotically to zero: this model predicts
both the phasesS andB may coexist ift→`.
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APPENDIX

In the model wherec(p)5g@12exp(2ap2)#, we have to
manage the function

12exp@2c~p!t/t#

c~p!
5

12exp$2g@12exp~2ap2!#t/t%

g@12exp~2ap2!#

5
1

tE0

t

dt1expS 2
g@12exp~2ap2!#t1

t D
5

1

tE0

t

dt1expS 2
gt1

t D
3expS gt1

t
exp~2ap2! D .

We have to calculate the integral

E
2`

`

dpw~p,t !511
m

t E0

t

dt1expS 2
gt1

t D I ~ t1!,

where

I ~ t1!5S 1

2psm
2 D 1/2E

2`

`

dp expS 2
p2

2sm
2 D

3expS gt1

t
exp~2ap2! D .

When developing the second exponential in the MacLau
series, we obtain the following sum of the Laplace integra

I ~ t1!5S 1

2psm
2 D 1/2

(
j 50

` t1
j

j ! t jE2`

`

dp expF2S 1

2sm
2

1 ja D p2G .

Hence,

I ~ t1!5(
j 50

` t1
j

j ! t j~112 jasm
2 !1/2

.

In this way, we have obtained the result
3-9
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E
2`

`

dpw~p,t !511
m

t (
j 50

`
1

j ! t j~112 jasm
2 !1/2E0

t

dt1

3expS 2
gt1

t D t1
j .

The integral on the right hand side of this equality is eas
calculable

E
0

t

dt1expS 2
gt1

t D t1
j 5

j ! t j 11

g j 11 F12expS 2
gt

t D (
k50

j
gktk

k! tkG .

Thus, we have obtained the distribution function
m

h

l

02191
y

F~p,t;0!5N~ t !Fd~p!1
m

g
M ~p;sm!

3
12exp$2g@12exp~2ap2!t/t#

12exp~2ap2t/t!
G ,

where

N~ t !5H 11
m

g
3(

j 50

`
1

g j~112 jasm
2 !1/2

3F12expS 2
gt

t D (
k50

j
gktk

k! tkG J 21

.
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